Lead scores in Poplar
Why use predictions for lead scores?
Knowing which leads are worth chasing–and which aren't–is key to keeping your teams focused and efficient in driving revenue.
The most effective way to predict a lead's likelihood to buy is with machine learning. With machine learning, you can ingest your lead lists as they come in, predict their likelihood to buy based on the historical data of similar shoppers, and plug the highest-scoring leads right back into your stack, no PhD required. No more time wasted on leads that were never going to convert in the first place.
Faraday makes predicting likelihood to buy for your leads intuitive & easy, and delivering them to any channel in your stack a breeze.
With lead score predictions in Poplar, you'll give your team the ability to focus on only the leads most likely to convert.
Follow the steps below to get your lead scores predictions into your Poplar account.
In this guide, we'll show you how to:
- Organize your customer data into cohorts
- Describe predictive models for lead scores with outcomes
- Deploy lead scores predictions to Poplar using Pipelines
Getting started with lead scores in Poplar
Make sure you have a Faraday account (signup is free!) and that it's not in test mode.
Requirements for this lead scores recipe
You'll need the following cohorts available in your Faraday account:
- A cohort representing your leads — or create one first
- A cohort representing your customers — or create one first
Building predictions for lead scores in Poplar
Now you'll create the prediction objective(s) necessary to complete this use case with Faraday.
Describe your lead scores predictions with outcomes
Outcomes use machine learning to predict whether or not people will exhibit a certain behavior.
Creating an outcome for likelihood to convert.
Let's make an outcome for likelihood to convert.
- In the navigation sidebar, choose Outcomes.
- Click the New outcome button.
- Fill out the form:
- Click the Save outcome button.
Faraday will do some magic in the background, so you can proceed with the rest of the instructions. When your outcome is done building, you'll get an email, and you can review your outcome.
Using Pipelines to deploy predictions to your stack
Now you'll configure the pipeline that deploys your predictions to poplar.
Create your pipeline for lead scores in Poplar
- In the navigation sidebar, choose Pipelines.
- Click the New Pipeline button.
- Fill out the form:
- Click the Save pipeline button.
Your pipeline will start building in the background. You can proceed immediately with the next set of instructions.
Deploying your pipeline to Poplar
CSV
- In the Deployment area, find the CSV module and click Add.
- Fill out the popup:
-
Choose the Identified option.
-
Choose Human friendly column headers.
-
- Click the Next button.
- Expand the Structure section of Advanced Settings
- Click the Finish button.
- Click the Test deployment button and confirm the results meet your expectations.
Faraday will finish building your pipeline in the background. When it's done, you'll get an email—return to the pipeline and click the Enable pipeline button to activate it.
How to use your lead scores predictions in Poplar
With your pipeline deployed, it's time to plug your lead scores into Poplar. Follow the steps below to create an audience in Poplar.
Creating a new audience in Poplar
- In your Faraday pipeline, click the Download CSV button under the deployment to download your lead scores as a CSV.
- Navigate to Poplar's Audiences dashboard, then click new audience in the upper right.
- Give your audience an appropriate name and optional description, then click create audience.
- In the view for your new audience, click upload CSV in the upper right.
- Select your Faraday deployment CSV in the file picker, and the page will load briefly.
- Map your CSV fields to Poplar fields. Most fields are likely to map automatically.
- As we already know that this CSV includes only the highest lead scores, we can safely select ignore this column for the two final columns indicating predictive scores.
- When finished, click continue to start the upload process.
- Once the upload is finished, you'll be presented with a confirmation screen indicating the total records imported. Click finish importing to finalize the import. You'll receieve an email from Poplar when your audience is ready, after which you can use it to launch campaigns to target only the best fits.
🔒 It's a best practice to permanently delete any file that contains personally identifiable information (PII) after use. Any deployment from Faraday that is unhashed contains PII, and should be deleted after uploading it to your destination for security purposes.